Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Glob Health ; 12(5): e875-e881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614635

RESUMO

The Guiana Shield, a small region of South America, is currently one of the main hotspots of malaria transmission on the continent. This Amazonian area is characterised by remarkable socioeconomic, cultural, health, and political heterogeneity and a high degree of regional and cross-border population mobility, which has contributed to the increase of malaria in the region in the past few years. In this context, regional cooperation to control malaria represents both a challenge and an indispensable initiative. This Viewpoint advocates for the creation of a regional cooperative mechanism for the elimination of malaria in the Guiana Shield. This strategy would help address operational and political obstacles to successful technical cooperation in the region and could contribute to reversing the regional upsurge in malaria incidence through creating a functional international control and elimination partnership.


Assuntos
Malária , Humanos , Malária/epidemiologia , Malária/prevenção & controle , Equipamentos de Proteção
2.
Expert Rev Anti Infect Ther ; 21(12): 1287-1299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37933443

RESUMO

INTRODUCTION: Chagas disease, caused by parasite Trypanosoma cruzi, is the most important neglected tropical disease in the Americas. Two drugs are available for treatment, but access to them is challenging, in part due to complex diagnostic algorithms. These are stage-dependent, involve multiple tests, and are ill-adapted to the reality of vast areas where the disease is endemic. Molecular and serologic tools are used to detect acute and chronic infections, with the performance of the latter showing geographic differences. Breakthroughs in the development of new diagnostic tools include the validation of a loop-mediated isothermal amplification assay for acute infections (T. cruzi-LAMP), and the regional validation of several rapid diagnostic tests (RDTs) for chronic infection, which simplify testing in resource-limited settings. The literature search was carried out in the MEDLINE database until 1 August 2023. AREAS COVERED: This review outlines existing algorithms, and proposes new ones focused on point-of-care testing. EXPERT OPINION: Integrating point-of-care testing into existing diagnostic algorithms in certain endemic areas will increase access to timely diagnosis and treatment. However, additional research is needed to validate the use of these techniques across a wider geography, and to better understand the cost-effectiveness of their large-scale implementation.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologia , Testes Imediatos , Testes de Diagnóstico Rápido , Algoritmos
3.
BMJ Open Respir Res ; 10(1)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37945314

RESUMO

INTRODUCTION: Despite its high prevalence and significance, there is still no widely available method to quantify cough. In order to demonstrate agreement with the current gold standard of human annotation, emerging automated techniques require a robust, reproducible approach to annotation. We describe the extent to which a human annotator of cough sounds (a) agrees with herself (intralabeller or intrarater agreement) and (b) agrees with other independent labellers (interlabeller or inter-rater agreement); we go on to describe significant sex differences in cough sound length and epochs size. MATERIALS AND METHODS: 24 participants wore an audiorecording smartwatch to capture 6-24 hours of continuous audio. A randomly selected sample of the whole audio was labelled twice by an expert annotator and a third time by six trained annotators. We collected 400 hours of audio and analysed 40 hours. The cough counts as well as cough seconds (any 1 s of time containing at least one cough) from different annotators were compared and summary statistics from linear and Bland-Altman analyses were used to quantify intraobserver and interobserver agreement. RESULTS: There was excellent intralabeller (less than two disagreements per hour monitored, Pearson's correlation 0.98) and interlabeller agreement (Pearson's correlation 0.96), using cough seconds as the unit of analysis decreased annotator discrepancies by 50% in comparison to coughs. Within this data set, it was observed that the length of cough sounds and epoch size (number of coughs per bout or attach) differed between women and men. CONCLUSION: Given the decreased interobserver variability in annotation when using cough seconds (vs just coughs) we propose their use for manually annotating cough when assessing of the performance of automatic cough monitoring systems. The differences in cough sound length and epochs size may have important implications for equality in the development of cough monitoring tools. TRIAL REGISTRATION NUMBER: NCT05042063.


Assuntos
Tosse , Caracteres Sexuais , Humanos , Masculino , Feminino , Tosse/diagnóstico , Monitorização Fisiológica , Variações Dependentes do Observador , Prevalência
4.
Cochrane Database Syst Rev ; 8: CD015422, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37602418

RESUMO

BACKGROUND: Insecticide-based interventions, such as long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS), remain the backbone of malaria vector control. These interventions target mosquitoes that prefer to feed and rest indoors, but have limited capacity to prevent transmission that occurs outdoors or outside regular sleeping hours. In low-endemicity areas, malaria elimination will require that these control gaps are addressed, and complementary tools are found. The use of topical repellents may be particularly useful for populations who may not benefit from programmatic malaria control measures, such as refugees, the military, or forest goers. This Cochrane Review aims to measure the effectiveness of topical repellents to prevent malaria infection among high- and non-high-risk populations living in malaria-endemic regions. OBJECTIVES: To assess the effect of topical repellents alone or in combination with other background interventions (long-lasting insecticide-treated nets, or indoor residual spraying, or both) for reducing the incidence of malaria in high- and non-high-risk populations living in endemic areas. SEARCH METHODS: We searched the following databases up to 11 January 2023: the Cochrane Infectious Diseases Group Specialised Register; CENTRAL (in the Cochrane Library); MEDLINE; Embase; CAB Abstracts; and LILACS. We also searched trial registration platforms and conference proceedings; and contacted organizations and companies for ongoing and unpublished trials. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and cluster-randomized controlled trials (cRCTs) of topical repellents proven to repel mosquitoes. We also included non-randomized studies that complied with pre-specified inclusion criteria: controlled before-after studies (CBA), controlled interrupted time series (ITS), and controlled cross-over trials. DATA COLLECTION AND ANALYSIS: Four review authors independently assessed trials for inclusion, and extracted the data. Two authors independently assessed the risk of bias (RoB) using the Cochrane RoB 2 tool. A fifth review author resolved any disagreements. We analysed data by conducting a meta-analysis, stratified by whether studies included populations considered to be at high-risk of developing malaria infection (for example, refugees, forest goers, or deployed military troops). We combined results from cRCTs with RCTs by adjusting for clustering and presented results using forest plots. We used the GRADE framework to assess the certainty of the evidence. We only included data on Plasmodium falciparum infections in the meta-analysis. MAIN RESULTS: Thirteen articles relating to eight trials met the inclusion criteria and were qualitatively described. We included six trials in the meta-analysis (five cRCTs and one RCT). Effect on malaria incidence Topical repellents may slightly reduce P falciparum infection and clinical incidence when both outcomes are considered together (incidence rate ratio (IRR) 0.74, 95% confidence interval (CI) 0.56 to 0.98; 3 cRCTs and 1 RCT, 61,651 participants; low-certainty evidence); but not when these two outcomes were considered independently. Two cRCTs and one RCT (12,813 participants) evaluated the effect of topical repellents on infection incidence (IRR 0.76, 95% CI 0.56 to 1.02; low-certainty evidence). One cRCT (48,838 participants) evaluated their effect on clinical case incidence (IRR 0.66, 95% CI 0.32 to 1.36; low-certainty evidence). Three studies (2 cRCTs and 1 RCT) included participants belonging to groups considered at high-risk of being infected, while only one cRCT did not include participants at high risk. Adverse events Topical repellents are considered safe. The prevalence of adverse events among participants who used topical repellents was very low (0.6%, 283/47,515) and limited to mild skin reactions. Effect on malaria prevalence Topical repellents may slightly reduce P falciparum prevalence (odds ratio (OR) 0.81, 95% CI 0.67 to 0.97; 3 cRCTs and 1 RCT; 55,366 participants; low-certainty evidence). Two of these studies (1 cRCT and 1 RCT) were carried out in refugee camps, and included exclusively high-risk populations that were not receiving any other background vector control intervention. AUTHORS' CONCLUSIONS: There is insufficient evidence to conclude that topical repellents can prevent malaria in settings where other vector control interventions are in place. We found the certainty of evidence for all outcomes to be low, primarily due to the risk of bias. A protective effect was suggested among high-risk populations, specially refugees, who might not have access to other standard vector control measures. More adequately powered clinical trials carried out in refugee camps could provide further information on the potential benefit of topical repellents in this setting. Individually randomized studies are also likely necessary to understand whether topical repellents have an effect on personal protection, and the degree to which diversion to non-protected participants affects overall transmission dynamics. Despite this, the potential additional benefits of topical repellents are most likely limited in contexts where other interventions are available.


Assuntos
Culicidae , Inseticidas , Malária Falciparum , Animais , Humanos , Mosquitos Vetores , Estudos Controlados Antes e Depois
5.
Res Rep Trop Med ; 14: 1-19, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37337597

RESUMO

Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.

6.
Microorganisms ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838206

RESUMO

Mounting a balanced and robust humoral immune response is of utmost importance for reducing the infectivity of Trypanosoma cruzi. While the role of such a response in controlling the infection is well known, there is a lack of tools that can be used to quickly evaluate it. We developed a serum parasite inhibition assay (to evaluate changes in the parasite infection after exposing infective T. cruzi trypomastigotes to serum samples from infected patients). It is based on Vero cells as the hosts and the Tulahuen ß-galactosidase parasite strain, genetically engineered to be quantifiable by spectrophotometry. In parallel, we developed an in-house ELISA to correlate the anti-T. cruzi antibody titres of the clinical samples with their observed anti-parasitic effect in the serum parasite inhibition assay. Serum samples from chronically T. cruzi-infected patients significantly inhibited parasite invasion in a titre-dependant manner, regardless of the patient's clinical status, compared to samples from the non-infected controls. In addition, there was a clear correlation between the reactivity of the samples to the whole-parasite lysates by ELISA and the inhibitory effect. The results of this work confirm the previously described anti-parasitic effect of the serum of individuals exposed to T. cruzi and present a framework for its large-scale evaluation in further studies. The serum parasite inhibition assay represents a reproducible way to evaluate the intensity and anti-parasitic effect of humoral responses against T. cruzi, which could be applied to the evaluation of candidate antigens/epitopes in the design of Chagas disease vaccine candidates.

7.
Front Cell Infect Microbiol ; 12: 1067461, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36710960

RESUMO

Introduction: Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and it is the most important neglected tropical disease in the Americas. Two drugs are available to treat the infection, but their efficacy in the chronic stage of the disease, when most cases are diagnosed, is reduced. Their tolerability is also hindered by common adverse effects, making the development of safer and efficacious alternatives a pressing need. T. cruzi is unable to synthesize purines de novo, relying on a purine salvage pathway to acquire these from its host, making it an attractive target for the development of new drugs. Methods: We evaluated the anti-parasitic activity of 23 purine analogs with different substitutions in the complementary chains of their purine rings. We sequentially screened the compounds' capacity to inhibit parasite growth, their toxicity in Vero and HepG2 cells, and their specific capacity to inhibit the development of amastigotes. We then used in-silico docking to identify their likely targets. Results: Eight compounds showed specific anti-parasitic activity, with IC50 values ranging from 2.42 to 8.16 µM. Adenine phosphoribosyl transferase, and hypoxanthine-guanine phosphoribosyl transferase, are their most likely targets. Discussion: Our results illustrate the potential role of the purine salvage pathway as a target route for the development of alternative treatments against T. cruzi infection, highlithing the apparent importance of specific substitutions, like the presence of benzene groups in the C8 position of the purine ring, consistently associated with a high and specific anti-parasitic activity.


Assuntos
Antiprotozoários , Nucleosídeos , Trypanosoma cruzi , Nucleosídeos/farmacologia , Transferases/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo , Antiprotozoários/farmacologia
8.
BMJ Open ; 11(7): e051278, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215614

RESUMO

INTRODUCTION: Cough is a common symptom of COVID-19 and other respiratory illnesses. However, objectively measuring its frequency and evolution is hindered by the lack of reliable and scalable monitoring systems. This can be overcome by newly developed artificial intelligence models that exploit the portability of smartphones. In the context of the ongoing COVID-19 pandemic, cough detection for respiratory disease syndromic surveillance represents a simple means for early outbreak detection and disease surveillance. In this protocol, we evaluate the ability of population-based digital cough surveillance to predict the incidence of respiratory diseases at population level in Navarra, Spain, while assessing individual determinants of uptake of these platforms. METHODS AND ANALYSIS: Participants in the Cendea de Cizur, Zizur Mayor or attending the local University of Navarra (Pamplona) will be invited to monitor their night-time cough using the smartphone app Hyfe Cough Tracker. Detected coughs will be aggregated in time and space. Incidence of COVID-19 and other diagnosed respiratory diseases within the participants cohort, and the study area and population will be collected from local health facilities and used to carry out an autoregressive moving average analysis on those independent time series. In a mixed-methods design, we will explore barriers and facilitators of continuous digital cough monitoring by evaluating participation patterns and sociodemographic characteristics. Participants will fill an acceptability questionnaire and a subgroup will participate in focus group discussions. ETHICS AND DISSEMINATION: Ethics approval was obtained from the ethics committee of the Centre Hospitalier de l'Université de Montréal, Canada and the Medical Research Ethics Committee of Navarre, Spain. Preliminary findings will be shared with civil and health authorities and reported to individual participants. Results will be submitted for publication in peer-reviewed scientific journals and international conferences. TRIAL REGISTRATION NUMBER: NCT04762693.


Assuntos
COVID-19 , Pandemias , Acústica , Inteligência Artificial , Canadá , Surtos de Doenças , Humanos , Estudos Observacionais como Assunto , SARS-CoV-2 , Espanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...